```
ShriShankaracharyaInstituteofProfessionalManagement\&TechnologyDepartmentofCivil Engineering
OnlineClass Test- ISession:Jan-June, 2023Month-June
Semester-4th Subject - Hydraulic EngineeringCode - B020412(020)TimeAllowed: 2
hrs.
Max Marks: 40
```

Note:-InPartI \& II, QuestionA is compulsoryand attempt anytwofrom B, C\& D.

Q.No.

Questions
Marks
Levels
onBloom' staxenom:

PartI

A. Explain the concept of Geometric, Kinematic and Dynamic similarities.

The thrust T of a propeller depends upon its diameter D, fluid density ρ,
B. dynamic viscosity μ, the rotating speed N, and the velocity V. Using Buckingham's π - theorem, obtain a relation for the thrust T .
In the model test of a spillway the discharge and velocity of flow in
C. the model are $6 \mathrm{~m}^{3} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ respectively. Calculate-
(1) Velocity in prototype
(2) Discharge in prototype
(3) Force Scale ratio
[8] Apply
(4) Power Scale ratio

Given- $\rho_{\mathrm{m}}=\rho_{\text {air }}=1.2 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\mathrm{p}}=\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~L}_{\mathrm{p}} / \mathrm{L}_{\mathrm{m}}=40$.
D. Derive an expression for calculation of water hammer pressure and pressure head developed for sudden closure in elastic pipes.

$$
[8] \quad \text { Analyze }
$$

PartII

A. Explain the concept of shear stress in turbulent flows

A smooth pipe of diameter 80 mm and 800 m long carries water at the rate of $0.480 \mathrm{~m}^{3} /$ minute. Calculate the loss of head, wall shearing stress, center line velocity, velocity, and shear stress at 30 mm from pipe wall. Also calculate
B. the thickness of laminar sub-layer. Take kinematic viscosity of water as 0.015 stokes. Take the value of co-efficient of friction f from the relation given as-
[8] Apply
$\mathrm{f}=0.0791 /(\mathrm{Re})^{1 / 4}$ where $\mathrm{Re}=$ Reynolds Number
A Pelton Wheel is to be designed for the following specifications:
Shaft power $=11772$ KWGross Head $=400 \mathrm{~m}$
Head lost in friction $=5 \%$ Speed $=800 \mathrm{rpm}$
Overall efficiency $=90 \%$, If the jet diameter is not to exceed $1 / 8^{\text {th }}$ of the wheel diameter. Calculate-
(i) Wheel diameter
(ii) Number of Jets required
C. (iii) Jet diameter
(iv) Power developed by the jet nozzle
(v) Hydraulic efficiency
(vi) Mechanical efficiency (Take $\mathrm{C}_{\mathrm{v}}=0.975$ and $\emptyset^{\prime}=0.45$)
(1) Obtain an expression for specific speed of Turbine with proper explanation
D. (2) A pump develops 500 KW power under a head of 100 meters at 200 rpm .

Determine its speed and power under a head of 80 meters.
[8] Apply

Shri Shankaracharya Institute of Professional Management \& Technology
Department of Civil Engineering
Class Test - II Session: Jan - June, 2023
Semester - 4th, Subject - Building Construction, Code - B020414(020)
Time Allowed: 2 hrs Max Marks: 40
Note: -Part (a) is compulsory. Attempt any two from Part (b), (c) and (d). Draw neat sketch wherever required.

Q.
No.
Cuestions

UNIT- III

(a) What is purpose of providing floors? What are its various components?
(b) What is Roof? What are its various types, explain with neat sketches?
(c) Explain the method of construction of cement concrete flooring.
(d) What do you understand by the term formwork? What are the requirements of a good form work?

$[4]$	Understand	CO 3
$[8]$	Understand	CO 3
$[8]$	Understand	CO 3
$[8]$	Understand	CO 3

UNIT- IV \& V

(a)	Define the term Plastering and Pointing.	$[4]$	Understand	$\mathrm{CO4}$
(b)	Explain various defects occurs in plastering work.	$[8]$	Understand	CO 4
(c)	Discuss various methods adopted for damp proofing of a building.	$[8]$	Understand	CO 4
(d)	Give a detailed note on fire safety requirements for buildings.	$[8]$	Understand	CO5

Class Test - II

Session: Jan - June, 2023 Month -June
Semester - 4th Subject-Surveying and Geomatics Subject Code -B020413(020)
Time Allowed: 2 hrs. Max Marks: 40
Note: - In Part I \& II, Question A is compulsory and attempt any two from B, C \& D.

\begin{tabular}{|c|c|c|c|c|}
\hline O. \& Questions \& Manks \& Levels of Bloom's taxonomy \& CO's \\
\hline \multicolumn{5}{|c|}{Part I} \\
\hline A. \& Define the term Satellite station, Reconnaissance, Trilateration and Triangulation \& [4] \& Remember \& CO1 \\
\hline B. \& \begin{tabular}{l}
From a satellite station, 14 m from A , angles measured to three triangulations \(\mathrm{A}, \mathrm{B}\) and C are as follows: \(\angle \mathrm{CSA}=30^{\circ} 45^{\prime} 48^{\prime \prime}\) and \(\angle \mathrm{BSC}\) \(=68^{\circ} 26^{\prime} 36^{\prime \prime}\). The length of sides AC and AB being 5678 m and 1441 m respectively. Find the \(\angle B A C\). \\
The altitude of two proposed stations A and B, 100 m apart are respectively 425 m and 750 m . The intervening obstruction situated at C , 60 km from A, has an elevation of 435 m . Ascertain if A and B are intervisible and necessary, find how much B should raise so that the line of sight must nowhere be less than 3 m above the surface of the ground.
\end{tabular} \& [8]
[8] \& Apply

Apply \& CO1

$\mathrm{CO1}$

\hline D. \& What is tilt distortion? Prove that in a tilted photograph, tilt distortion is radial from the isocentre. \& [8] \& Understand \& CO 4

\hline \multicolumn{5}{|c|}{Part II}

\hline A. \& | Define Stereo photogrammetry, Aerial surveying and Exposure station or Air station |
| :--- |
| Two points A and B having elevation of 500 m and 300 m respectively above datum appear on the vertical photograph having focal length of 20 cm and flying altitude of 2500 m above datum. Their photographic coordinate are as follows :- | \& [4] \& Remember \& CO4

\hline B. \& Point Photographic Photographic

$$

$$ \& [8] \& Apply \& CO 4

\hline C. \& A, B and C are three visible stations in a hydrographic survey. The computed sides of the triangle ABC are $\mathrm{AB}, 1150 \mathrm{~m} ; \mathrm{BC}, 1392 \mathrm{~m}$; and CA, 1893m. Outside this triangle (and nearer to AC), a station P is established and its position is to be found by three point resection on A, B and C, the angles APB and BPC being respectively $43^{\circ} 37^{\prime}$ and $56^{\circ} 25^{\prime}$. Determine the distances PA and PC. \& [8] \& Apply \& CO5

\hline D. \& | Define the following |
| :--- |
| Hydrographic Surveying, Sounding, Fathometer, Sextant and Shore line and range line | \& [8] \& Remember \& CO5

\hline
\end{tabular}

	Shri Shankaracharya Institute of Professional Man Department of Civil Engineer Class Test - II Session- Jan-June, 2023 Sem- 4 Time Allowed: 2 hrs Note: - Question Q1 is compulsory. Attempt any 2 questins fr	nageme ring	t \& Technology Month-June Code- B020415 Max Marks: 40 Q3 and Q4:	
Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
PART-I				
Q1	Describe rock cycle with the neat sketch.	[4]	Understanding	CO 3
Q2	Describe petrological notes on: (any four) (i) Basalt (ii) Dolerite (iii) Gabbro (iv) Gneiss (v) Schist	[8]	Understanding	CO 3
Q3	Classify igneous rocks and describe major structures and textures of igneous rocks.	[8]	Understanding	CO 3
Q4	Discuss fold And give classification of fold.	[8]	Understanding	CO4
PART-II				
Q1	Discuss unconformity and mention its types.	[4]	Understanding	CO4
Q2	Describe the various types of faults occur in rocks with neat sketch.	[8]	Understanding	CO4
Q3	Describe land subsidence with examples.,	[8]	Understanding	CO5
Q4	Describe the causes of land slide and suggest the preventive measure of it.	[8]	Understanding	CO5

Shri Shankaracharya Institute of Professional Management \& Technology, Raipur Department of Civil Engineering

Class Test - II Session: Jan - June, 2023 Month - June
Ralpur
Semester - $\mathbf{4}^{\text {th }} \quad$ Subject - SA-I \quad Code - B020411(020)

Time Allowed: 2 hrs
 Max Marks: 40

Note: - Question (A) of every part is compulsory and solve any two questions from (B), (C) and (D)

No.	Questions	Marks	Levels of Bloom's taxonomy	cos

Part- I

Discuss the following:
(A)
(I) Betti's theorem
(II) Maxwell reciprocal theorem

Figure shows a pin-jointed truss loaded with a single load $\mathrm{W}=100 \mathrm{kN}$. If the area of cross-section of all members shown in Figure is $1000 \mathrm{~mm}^{2}$, what is the vertical deflection of Point C? Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ for all members.
(B)

Determine the deflection and rotation at the free end of the cantilever beam shown in Figure 3.16(a). Use unit load method. Given $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=12 \times 10^{6} \mathrm{~mm}^{4}$.
(C)

[08]
Evaluate
CO 3
[08]
Apply
CO3

A cantiliver beam is in the form of a quarter of a circle in the vertical plane and is subjected to a vertical load P at its free end as shown in fig. Find the vertical and horizontal displacements at the free end. Assume constant flexural rigidity.
(D)

Evaluate

Part- II

(A)

Discuss the difference between construction of an influence line and construction of shear force and bending moment diagram.
Asymmetrical parabolic arch hinged at springing and crown has a span of 30 m . The central rise of the arch is 4 m . It is loaded with UDL of $2.5 \mathrm{kN} / \mathrm{m}$ on the left 8 m length. Calculate:
a) The direction and the magnitude of reaction at the hinges.
b) The bending moment, normal, thrust and shears at 4 m from left end.

A train of concentrated loads as shown in figure crosses a simply supported beam of span 16 m from left to right. Determine the absolute maximum shear force and absolute maximum Bending Moment developed in the beam.
(C)

The system of concentrated loads as shown in figure rolls from left to right on
the girder of span $15 \mathrm{~m}, 40 \mathrm{kN}$ load leading. For a section 4 m from left support,
The system of concentrated loads as shown in figure rolls from left to right on
the girder of span $15 \mathrm{~m}, 40 \mathrm{kN}$ load leading. For a section 4 m from left support,
determine
(I) Maximum bending moment
determine
(I) Maximum bending moment
(II) Maximum shear force

[04]	Understand	CO 4
$[08]$	Apply	CO 5
$[08]$	Evaluate	CO

(D)

